A free quadratic equation calculator that shows and explains each step in solving your quadratic equation.

You entered:

There are two real solutions: x = 2.3121203192793, and x = 1.1693611622022.

(1)

For any quadratic equation

(2)

In the form above, you specified values for the variables a, b, and c. Plugging those values into Eqn. 1, we get:

(3) \(x=--94\pm\frac{\sqrt{-94^2-4*27*73}}{2*27}\)

which simplifies to:

(4) \(x=--94\pm\frac{\sqrt{8836-7884}}{54}\)

\(x=\frac{--94+30.854497241083}{54}\) = 2.3121203192793,

and

\(x=\frac{--94-30.854497241083}{54}\) = 1.1693611622022,

Both of these solutions are real numbers.

These are the two solutions that will satisfy the quadratic equation

ax

where x is unknown. A, b, and c are constants. A and b are referred to as coefficients. It should be noted that a cannot equal 0 in the equation ax

Solving a linear equation is straightforward. Solving a quadratic equation requires some more advanced mathematics. However, any quadratic equation can readily be solved using the quadratic formula. The quadratic formula is:

When you compute a solution to a quadratic equation, you will always find 2 values for x, called "roots". These roots may both be real numbers or, they may both be complex numbers. Depending on the values of a, b, and c, both roots may have the same value, resulting in one solution for x.

You may be asking yourself, "Why is this stuff so important?" Quadratic equations are needed to calculate answers to many real-world problems. For example, to compute whether a braking car can stop fast enough to avoid hitting something would require the use of s quadratic equation.

The term "quadratic" comes from the Latin word

We hope you find this quadratic equation calculator useful. We encourage you to try it with different values, and to read the explanation for how to reach your answer. But, if you just want to use it to calculate the answers to your quadratic equations, that's cool too. Thank you for your interest in Quadratic-Equation-Calculator.com.

click here for a random example of a quadratic equation.