A free quadratic equation calculator that shows and explains each step in solving your quadratic equation.

You entered:

There are two real solutions: x = 2.3121203192793, and x = 1.1693611622022.

(1)

For any quadratic equation

(2)

In the form above, you specified values for the variables a, b, and c. Plugging those values into Eqn. 1, we get:

(3) \(x=--94\pm\frac{\sqrt{-94^2-4*27*73}}{2*27}\)

which simplifies to:

(4) \(x=--94\pm\frac{\sqrt{8836-7884}}{54}\)

\(x=\frac{--94+30.854497241083}{54}\) = 2.3121203192793,

and

\(x=\frac{--94-30.854497241083}{54}\) = 1.1693611622022,

Both of these solutions are real numbers.

These are the two solutions that will satisfy the quadratic equation

ax

where x is unknown. A, b, and c are constants. A and b are referred to as coefficients. Further, it should be noted that a cannot equal 0 in the equation ax

Solving a linear equation is pretty basic. Solving a quadratic equation is less simple. However, you have this handy-dandy quadratic equation calculator. Acutally, quadratic equations can be readily solved using the quadratic formula, which is the same technique used by this quadratic equation calculator. Try it, and it will explain each of the steps to you. The quadratic formula is written:

Since there are always 2 solutions to a square root (one negative, one positive), solving the quadratic equation results in 2 values for x. The two solutions for x (which may be positive or negative, real or complex) are called roots. Under extraordinary circumstances, the two roots may equal each other, producing one solution for x.

You may be asking yourself, "Why is this stuff so important?" Quadratic equations are needed to find answers in many real-world fields, including physics, biology and architecture.

As mentioned above, in the equation ax

We this quadratic equation calculator is useful to you. We encourage you to try it with different values, and to read the explanation for how to reach your answer. But we totally understand if you just want to use it to find the answers you're looking for. Thank you for your interest in Quadratic-Equation-Calculator.com.

click here for a random example of a quadratic equation.