Solving 27x2+-94x+73 using the Quadratic Formula

A free quadratic equation calculator that shows and explains each step in solving your quadratic equation.


For your equation of the form "ax2 + bx + c = 0," enter the values for a, b, and c:

a
 
x2
 
+
b
 
x
 
+
c
 
= 0
Reset

You entered:
27x2+-94x+73=0.

There are two real solutions: x = 2.3121203192793, and x = 1.1693611622022.

Here's how we found that solution:

You entered the following equation:
(1)           27x2+-94x+73=0.

For any quadratic equation ax2 + bx + c = 0, one can solve for x using the following equation, which is known as the quadratic formula:
(2)          

In the form above, you specified values for the variables a, b, and c. Plugging those values into Eqn. 1, we get:
(3)           \(x=--94\pm\frac{\sqrt{-94^2-4*27*73}}{2*27}\)

which simplifies to:
(4)           \(x=--94\pm\frac{\sqrt{8836-7884}}{54}\)

Now, solving for x, we find two real solutions:
\(x=\frac{--94+30.854497241083}{54}\) = 2.3121203192793,
  and
\(x=\frac{--94-30.854497241083}{54}\) = 1.1693611622022,

Both of these solutions are real numbers.
These are the two solutions that will satisfy the quadratic equation 27x2+-94x+73=0.






Notes

A quadratic equation is any equation that can take the form:
ax2 + bx + c = 0,
where x is an unknown. A, b, and c are constants. A and b are referred to as coefficients. Also, it should be noted that a cannot equal 0 in the equation ax2+bx+c=0. If a is 0, then ax2=0, and the equation becomes 0+bx+c=0, or bx+c=0. The equation bx+c=0 is a linear equation, and not a quadratic equation.

In contrast to solving a linear equation, solving a quadratic equation is a more complicated task. Fortunately, any quadratic equation can quickly be solved using the quadratic formula. This is the quadratic formula:


Solving a quadratic equation will always result in 2 solutions for x. These solutions are called roots. These roots may both be real numbers or, they may both be complex numbers. Rarely, both roots may have the same value, producing one solution for x.

Quadratic equations are an important part of mathematics. Quadratic equations are needed to find answers in many real-world fields, including physics, pharmacokinetics and architecture.

The quadratic formula has been known for centuries. Brahmagupta, a mathematician from India, first described the quadratic formula as a means to calculate solutions to quadratic equations in the 7th Century AD.

We this quadratic equation calculator is useful to you. We encourage you to plug in different values for a, b, and c. But we totally understand if you just want to use it to find the answers you're looking for. Thank you for using Quadratic-Equation-Calculator.com.

click here for a random example of a quadratic equation.