A free quadratic equation calculator that shows and explains each step in solving your quadratic equation.

You entered:

There are no solutions in the real number domain.

There are two complex solutions: x = 0.28787878787879 + 0.089637572471206

where

(1)

For any quadratic equation

(2)

In the form above, you specified values for the variables a, b, and c. Plugging those values into Eqn. 1, we get:

(3) \(x=--38\pm\frac{\sqrt{-38^2-4*66*6}}{2*66}\)

which simplifies to:

(4) \(x=--38\pm\frac{\sqrt{1444-1584}}{132}\)

(5) \(x=--38\pm\frac{\sqrt{-140}}{132}\)

This means that our solution will require finding the square root of a negative number. There is no real number solution for this, so our solution will be a complex number (that is, it will involve the imaginary number

Let's calculate the square root:

(6) \(x=--38\pm\frac{11.832159566199i}{132}\)

This equation further simplifies to:

(7) \(x=-\frac{--38}{132}\pm0.089637572471206i\)

Solving for x, we find two solutions which are both complex numbers:

x = 0.28787878787879 + 0.089637572471206

and

x = 0.28787878787879 - 0.089637572471206

Both of these solutions are complex numbers.

These are the two solutions that will satisfy the equation

Calculating a solution to a quadratic equation may seem challenging. However, there are a number of methods for solving quadratic equations. One of the most widely used is the quadratic formula. This is the quadratic formula:

When you compute a solution to a quadratic equation, you will always find 2 values for x, called "roots". These roots may both be real numbers or, they may both be complex numbers. Depending on the values of a, b, and c, these two roots may have the same value, resulting in one solution for x.

Why do we care about qudratic equations? Quadratic equations are needed to calculate answers to many real-world problems. The distance before a vehicle can stop once you hit the brakes is one example of an application of quadratic equations.

As mentioned above, in the equation ax

We this quadratic equation solver is useful to you. We encourage you to try it with different values, and to read the explanation for how to reach your answer. But, if you just want to use it to calculate the answers to your quadratic equations, that's cool too. Thank you for your interest in Quadratic-Equation-Calculator.com.

click here for a random example of a quadratic equation.