Solving 66x2+-38x+6 using the Quadratic Formula

A free quadratic equation calculator that shows and explains each step in solving your quadratic equation.


For your equation of the form "ax2 + bx + c = 0," enter the values for a, b, and c:

a
 
x2
 
+
b
 
x
 
+
c
 
= 0
Reset

You entered:
66x2+-38x+6=0.

There are no solutions in the real number domain.
There are two complex solutions: x = 0.28787878787879 + 0.089637572471206i, and x = 0.28787878787879 - 0.089637572471206i,
where i is the imaginary unit.

Here's how we found that solution:

You entered the following equation:
(1)           66x2+-38x+6=0.

For any quadratic equation ax2 + bx + c = 0, one can solve for x using the following equation, which is known as the quadratic formula:
(2)          

In the form above, you specified values for the variables a, b, and c. Plugging those values into Eqn. 1, we get:
(3)           \(x=--38\pm\frac{\sqrt{-38^2-4*66*6}}{2*66}\)

which simplifies to:
(4)           \(x=--38\pm\frac{\sqrt{1444-1584}}{132}\)

Now, note that b2-4ac is a negative number. Specifically in our case, 1444 - 1584 = -140.
(5)           \(x=--38\pm\frac{\sqrt{-140}}{132}\)

This means that our solution will require finding the square root of a negative number. There is no real number solution for this, so our solution will be a complex number (that is, it will involve the imaginary number i, defined as the square root of -1.).
Let's calculate the square root:
(6)           \(x=--38\pm\frac{11.832159566199i}{132}\)

This equation further simplifies to:
(7)           \(x=-\frac{--38}{132}\pm0.089637572471206i\)

Solving for x, we find two solutions which are both complex numbers:
x = 0.28787878787879 + 0.089637572471206i
  and
x = 0.28787878787879 - 0.089637572471206i

Both of these solutions are complex numbers.
These are the two solutions that will satisfy the equation 66x2+-38x+6=0.






Notes

What is a quadratic equation? A quadratic equation is an function that has the form: ax2 + bx + c = 0. In this equation, x is a variable which is not known, and a, b, and c are constants. The constants a and b, are referred to as coefficients. It is worth pointing out that a cannot be equal to 0 in the equation ax2+bx+c=0. Otherwise, the equation ceases to be a quadratic equation, and becomes a linear equation.

Finding a solution to a quadratic equation may appear daunting, because both x and x2 are unknown. Fortunately, you have this handy-dandy quadratic equation solver. All kidding aside, quadratic equations can be always solved using the quadratic formula, which is the same technique used by this quadratic equation solver. Try it, and it will explain each of the steps to you. Here is the quadratic formula:


When you compute a solution to a quadratic equation, you will always find 2 values for x, called "roots". These roots may both be real numbers or, they may both be complex numbers. Under extraordinary circumstances, these two roots may be the same, meaning there will only be one solution for x.

Quadratic equations are more than just mathematical flights of fantasy Quadratic equations are needed to compute answers in many real-world fields, including physics, biology and business.

The quadratic formula has been known for centuries. Brahmagupta, a mathematician from India, first described the quadratic formula as a means to calculate solutions to quadratic equations in the 7th Century AD.

We this quadratic equation solver is useful to you. We hope the explanations showing how you can solve the equation yourself are educational and helpful. But we totally understand if you just want to use it to find the answers you're looking for. Thank you for your interest in Quadratic-Equation-Calculator.com.

click here for a random example of a quadratic equation.