A free quadratic equation calculator that shows and explains each step in solving your quadratic equation.

You entered:

There are two real solutions: x = 0.62422813026934, and x = -1.6242281302693.

(1)

For any quadratic equation

(2)

In the form above, you specified values for the variables a, b, and c. Plugging those values into Eqn. 1, we get:

(3) \(x=-72\pm\frac{\sqrt{72^2-4*72*-73}}{2*72}\)

which simplifies to:

(4) \(x=-72\pm\frac{\sqrt{5184--21024}}{144}\)

\(x=\frac{-72+161.88885075878}{144}\) = 0.62422813026934,

and

\(x=\frac{-72-161.88885075878}{144}\) = -1.6242281302693,

Both of these solutions are real numbers.

These are the two solutions that will satisfy the quadratic equation

Compared to solving a linear equation, solving a quadratic equation requires a few more steps. However, you have this handy-dandy quadratic equation calculator. Acutally, quadratic equations can be readily solved using the quadratic formula, which is the same technique used by this quadratic equation calculator. Try it, and it will explain each of the steps to you. The quadratic formula is:

When you compute a solution to a quadratic equation, you will always find 2 values for x, called "roots". These roots may both be real numbers or, they may both be complex numbers. Rarely, the two roots may be the same, producing one solution for x.

Quadratic equations are an important part of mathematics. Quadratic equations are needed to compute answers in many real-world fields, including engineering, pharmacokinetics and business.

The quadratic equation calculator on this website uses the quadratic formula to solve your quadratic equations, and this is a reliable and relatively simple way to do it. But there are other ways to solve a quadratic equation, such as completing the square or factoring.

We this quadratic equation solver is useful to you. We encourage you to plug in different values for a, b, and c. But we totally understand if you just want to use it to find the answers you're looking for. Thank you for using Quadratic-Equation-Calculator.com.

click here for a random example of a quadratic equation.